Biology Seminar

12:30 - 1:30 pm Friday, October 29, 2021 Via ZOOM

Gregory Sutton Professor Royal Society University Research Fellow School of Life Sciences University of Lincoln UK

Insects achieve feats of speed and acceleration that would be almost impossible for a larger animal; jumping, spinning, and diving through world through an intricate use of bio-mechanical mechanical structures within their bodies. I will first discuss the high-speed mechanisms in the Grasshopper, which can achieve a take-off velocity of 3 m/s in times as short as 20 thousandths of a second. This will then be compared with that of the froghopper, an even faster jumping animal, which can generate a take-off velocity of 5 m/s in one millsecond (experiencing hundreds of g's of acceleration). Lastly, and then I'll go faster still to the extreme jaw closure of the trap-jaw ant, accelerating to a tip velocity of 30 m/s in a mere 100 microseconds. I'll discuss the energetics of such motions, and the springs, shock absorbers, and mechanical gearings that are required for such spectacular feats of high-speed insect agility. While the mechanisms used are distinct for individual animals, the fundamental mechanical lessons learned are common across each animal, providing lessons that inform our prototype jumping robot.

